
 
©  College of the North Atlantic CT2300 Page 1 of 6 

Course Information for 2014 - 2015 
 

 
COURSE NUMBER:  CT2300 
 
COURSE TITLE:   Applied Programming 
 
COURSE DESCRIPTION: 
 
This is a course designed to introduce the technology learner to the concepts of problem solving 
using computer programming. The course will be taught using a high level language such as C or 
C++. Learners will write programs to solve problems within their related disciplines and will 
learn the concepts of troubleshooting and problem solving. The course covers the following 
areas: structured programming concepts, data types, decision statements, loop and iteration 
procedures, Input/Output procedures, and files. 
 
PREREQUISITES:   MA1101 - Mathematics 

Or 
CE1140 – Network Computer Essentials  
ET1151 – Circuit Analysis II  

 
CO-REQUISITES:   None 
 
CREDIT VALUE:   Four (4) 
 
COURSE HOURS PER WEEK: Three (3) 
 
LAB HOURS PER WEEK:  Two (2) 
 
SUGGESTED TEXT: 
 
One of: 
 
Larsen, R. (2011). LabVIEW for engineers. Prentice Hall. ISBN-13: 978-0136094296 
 
Zak, D.  (2012). An introduction to programming with C++ (7th ed.).  Boston:  Course 

Technology.  ISBN-13: 9781285061474 
 
LEARNING RESOURCES: To be determined by instructor 
 
MAJOR TOPICS: 
 
1.0 Programming Fundamentals 
2.0 Computer Fundamentals 
3.0 Number Systems and Variable Types 
4.0 Input/Output Functions 
5.0 Decision Statements and Loops 



 
©  College of the North Atlantic CT2300 Page 2 of 6 

6.0 Structured Programming 
7.0 Strings and Arrays 
 
LEARNING OBJECTIVES: 
 
The expected learning outcomes are that the learner will be able to: 
 
1.0 Programming Fundamentals 
 

1.1 Introduction to Programming Languages 
1.1.1 Discuss the history of computers 
1.1.2 Describe low level and high level programming 
1.1.3 Describe the history of programming languages 

 
1.2 Using the Editor to Write Programs 

1.2.1 Describe the programming environment 
1.2.2 Demonstrate how to store and retrieve files 

 
1.3 Compiling Programs 

1.3.1 Describe the process of compiling a program 
1.3.2 Explain the conversion from source code to machine code 

 
1.4 Linking and Executable Files 

1.4.1 Explain the function of the object file 
1.4.2 Explain the function of an executable file 
1.4.3 Demonstrate the function of a linker 

 
1.5 Using the main () Function 

1.5.1 Explain the main () function 
1.5.2 Illustrate the purpose of the main () function in programs 

 
1.6 Header Files 

1.6.1 Explain header files 
1.6.2 Explain the use of header files of repetitive operations 
1.6.3 Demonstrate how to use the include command with header files 

 
1.7 C Programming Syntax 

1.7.1 Illustrate the proper format for a function 
1.7.2 Illustrate the proper order for header files and functions 
1.7.3 Demonstrate how to add comments to a program 

 
2.0 Computer Fundamentals 
 

2.1 Introduction to the Central Processing Unit 
2.1.1 Describe the purpose of the CPU 
2.1.2 Illustrate the use of the ALU, stack and registers 



 
©  College of the North Atlantic CT2300 Page 3 of 6 

 
2.2 Storage Systems 

2.2.1 Explain how programs are stored 
2.2.2 Demonstrate how to store and retrieve files 
2.2.3 Describe logical structures of hard drives 

 
2.3 Memory Systems 

2.3.1 Explain memory systems 
2.3.2 Describe Random Access Memory 
2.3.3 Describe Read Only Memory 
2.3.4 Illustrate how the program is stored and executed in memory 

 
2.4 Input and Output Devices 

2.4.1 Introduce the concepts of Input and Output 
2.4.2 Demonstrate input using the keyboard as an example 
2.4.3 Demonstrate output using the monitor as an example 

 
3.0 Number Systems and Variable Types 
 

3.1 Introduction to Base Number Systems 
3.1.1 Describe the number systems (decimal, binary, octal and hexadecimal) 
3.1.2 Describe the importance of binary and hexadecimal in computers 

 
3.2 Decimal and Nondecimal Numbers 

3.2.1 Explain the integer number type 
3.2.2 Explain the floating point number type 
3.2.3 Describe how integers are stored and calculated 
3.2.4 Describe how floating point numbers are stored and calculated 

 
3.3 Variables and Constants 

3.3.1 Explain the concept of a variable 
3.3.2 Explain the need for variables in programming 
3.3.3 Illustrate how to use constants in a formula 
3.3.4 Introduce the concept of a constant 
3.3.5 Illustrate constants using a constant in a formula 
3.3.6 Declare global constants in programs  

 
3.4 Declaring Variable Types 

3.4.1 Demonstrate the proper way to declare variables 
3.4.2 Declare variables of float, character and integer types 

 
4.0 Input/Output Functions 
 

4.1 Introduction to User Interaction 
4.1.1 Demonstrate user input and output 
4.1.2 Illustrate the use of input and output devices 



 
©  College of the North Atlantic CT2300 Page 4 of 6 

 
4.2 Using Built-In I/O Functions 

4.2.1 Use built-in input functions to get input from users 
4.2.2 Use built-in output functions to generate program outputs 

 
5.0 Decision Statements and Loops 
 

5.1 Relational Operators 
5.1.1 Define relational operators 
5.1.2 Define the proper syntax relational operators 
5.1.3 Illustrate the use of relational operators 

 
5.2 If... Else Statements 

5.2.1 Explain if... else decision making statements 
5.2.2 Illustrate the use of relational operators in if... else statements 
5.2.3 Demonstrate the proper syntax for if... else statements 
 

5.3 Case Statements 
5.3.1 Define case statements decision making statements 
5.3.2 Explain the switch () function 
5.3.3 Illustrate the proper syntax for case statements 

 
5.4 While Loops 

5.4.1 Explain loops 
5.4.2 Illustrate the use of relational operators with while loops 
5.4.3 Define the proper syntax for while loops 

 
5.5 Do... While Loops 

5.5.1 Define a do... while loop 
5.5.2 Explain the increment and decrement commands 
5.5.3 Illustrate the proper syntax for do... while loops 

 
5.6 Nested Loops 

5.6.1 Define nested loops 
5.6.2 Illustrate how to put one loop inside another 
5.6.3 Describe the problem of endless loops 

 
6.0 Structured Programming 
 

6.1 Program Design Using Pseudo Code 
6.1.1 Define pseudo code 
6.1.2 Demonstrate pseudo code as a means to define the programming solution 

 
6.2 Program Design Using Flow Charts 

6.2.1 Define flow chart 
6.2.2 Illustrate the use of flow charts in program problem solving 



 
©  College of the North Atlantic CT2300 Page 5 of 6 

6.2.3 Draw the symbols for proper flow charting 
 

6.3 Introduction to Functions 
6.3.1 Define a function 
6.3.2 Outline how programs can be broken down into smaller functions 
6.3.3 Demonstrate how functions simplify programming 

 
6.4 Calling Functions 

6.4.1 Demonstrate the proper way to call a function 
6.4.2 Demonstrate what happens when a function is called 

 
6.5 Using Function Prototypes 

6.5.1 Define function prototypes 
6.5.2 Demonstrate the purpose of declaring functions 

 
7.0 Strings and Arrays 
 

7.1 Introduction to Strings 
7.1.1 Define a string 
7.1.2 Illustrate how to declare and use strings 

 
7.2 Storing Strings 

7.2.1 Demonstrate how strings are stored in memory 
 

7.3 Introduction to Arrays 
7.3.1 Define array 
7.3.2 Describe how arrays are used in programming 
7.3.3 Implement a single dimensional array 

 
7.4 Multidimensional Arrays 

7.4.1 Define multidimensional arrays 
7.4.2 Define rows and columns 
7.4.3 Demonstrate multidimensional arrays 
7.4.4 Define array applications using spreadsheets and database examples 

 
7.5 Array Applications 

7.5.1 Implement algorithms to compute the average of values stored in an array 
7.5.2 Implement algorithms to perform a linear search and a binary search on an 

array   
7.5.3 Implement algorithms to sort array elements, such as insertion sort, quick 

sort, merge sort 
 
EVALUATION: 
 
Assignments:   25% 
Projects:   15% 



 
©  College of the North Atlantic CT2300 Page 6 of 6 

Quizzes:   60% 
 
DATE DEVELOPED: March 25, 1996 DATE REVIEWED: 
 
REVISION NUMBER: 4   DATE REVISED: March 2014 
 
Note to instructor: Check PIRS to ensure this outline is the most current version. 


